ICIIT 2018
Keynote Speakers

December 11 - 14, 2018
College of Engineering Guindy (CEG)
Anna University, Chennai, INDIA

ICIIT 2018 : Keynote Speakers

Dr. C. Mohan

C. Mohan

IBM Almaden Research Center, USA

Blockchains Untangled : Public, Private, Smart Contracts, Applications, Issues

Tuesday December 11, 01:30 – 02:30  |   Ada Lovelace Auditorium, IST Dept.

The concept of a distributed ledger was invented as the underlying technology of the public or permissionless Bitcoin cryptocurrency network. But the adoption and further adaptation of it for use in the private or permissioned environments is what I consider to be of practical consequence and hence only such private blockchain systems will be the focus of this talk.

Computer companies like IBM, Intel, Oracle, Baidu and Microsoft, and many key players in different vertical industry segments have recognized the applicability of blockchains in environments other than cryptocurrencies. IBM did some pioneering work by architecting and implementing Fabric, and then open sourcing it. Now Fabric is being enhanced via the Hyperledger Consortium as part of The Linux Foundation. There is a great deal of momentum behind Hyperledger Fabric throughout the world. Other private blockchain efforts include Enterprise Ethereum, Hyperledger Sawtooth and R3 Corda.

While currently there is no standard in the private blockchain space, all the ongoing efforts involve some combination of persistence, transaction, encryption, virtualization, consensus and other distributed systems technologies. Some of the application areas in which blockchain systems have been leveraged are: global trade digitization, derivatives processing, e-governance, Know Your Customer (KYC), healthcare, food safety, supply chain management and provenance management.

In this talk, I will describe some use-case scenarios, especially those in production deployment. I will also survey the landscape of private blockchain systems with respect to their architectures in general and their approaches to some specific technical areas. I will also discuss some of the opportunities that exist and the challenges that need to be addressed. Since most of the blockchain efforts are still in a nascent state, the time is right for mainstream database and distributed systems researchers and practitioners to get more deeply involved to focus on the numerous open problems. Extensive blockchain related collateral can be found at http://bit.ly/CMbcDB

Dr. C. Mohan has been an IBM researcher for 37 years in the database and related areas, impacting numerous IBM and non-IBM products, the research and academic communities, and standards, especially with his invention of the well-known ARIES family of database locking and recovery algorithms, and the Presumed Abort distributed commit protocol. This IBM (1997), and ACM and IEEE (2002) Fellow has also served as the IBM India Chief Scientist for 3 years (2006-2009). In addition to receiving the ACM SIGMOD Innovations Award (1996), the VLDB 10 Year Best Paper Award (1999) and numerous IBM awards, Mohan was elected to the US and Indian National Academies of Engineering (2009) and named an IBM Master Inventor (1997). This Distinguished Alumnus of IIT Madras (1977) received his PhD at the University of Texas at Austin (1981). He is an inventor of 50 patents. He is currently focused on Blockchain, Big Data and HTAP technologies (http://bit.ly/CMbcDB, http://bit.ly/CMgMDS). Since 2016, Mohan has been a Distinguished Visiting Professor of China’s prestigious Tsinghua University. He has served on the advisory board of IEEE Spectrum, and on numerous conference and journal boards. Mohan is a frequent speaker in North America, Europe and Asia, and has given talks in 40 countries. He is very active on social media and has a huge network of followers. More information can be found in the Wikipedia page at http://bit.ly/CMwIkP

Prof. Jure Leskovec

Jure Leskovec

Stanford University, USA

Graph Representation Learning

Thursday December 13, 09:30 – 10:30  |   Ada Lovelace Auditorium, IST Dept.

Machine learning on graphs is an important and ubiquitous task with applications ranging from drug design to friendship recommendation in social networks. The primary challenge in this domain is finding a way to represent, or encode, graph structure so that it can be easily exploited by machine learning models. However, traditionally machine learning approaches relied on user-defined heuristics to extract features encoding structural information about a graph. In this talk I will discuss methods that automatically learn to encode graph structure into low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality reduction. I will provide a conceptual review of key advancements in this area of representation learning on graphs, including random-walk based algorithms, and graph convolutional networks.

Jure Leskovec is Associate Professor of Computer Science at Stanford University, Chief Scientist at Pinterest, and investigator at Chan Zuckerberg Biohub. His research focuses on machine learning and data mining large social and information networks, their evolution, and the diffusion of information and influence over them. Computation over massive data is at the heart of his research and has applications in computer science, social sciences, economics, marketing, and healthcare. This research has won several awards including a Lagrange Prize, Microsoft Research Faculty Fellowship, the Alfred P. Sloan Fellowship, and numerous best paper awards. Leskovec received his bachelor's degree in computer science from University of Ljubljana, Slovenia, and his PhD in in machine learning from the Carnegie Mellon University and postdoctoral training at Cornell University.

Prof. Raj Reddy

Raj Reddy

Carnegie Mellon University, USA

AI: Background, History and Future Opportunities

Tuesday December 11, 09:30 – 10:30  |   Vivekananda Auditorium, CEG.

This talk will provide Background and History of AI in an attempt to clarify the sources of misinformation about AI in the media recently. Many of these predictions are based on flawed reasoning and incorrect extrapolations and will not happen. Robots will not take over the world. In this talk, we will review tools, techniques and advances in AI over the past half century and explore what might be next. We will discuss how these Intelligent Agents will lead to Knowledge as a Service Industry (KaaS) and create a Market Place for Apps that provide KaaS.

Raj Reddy is a University Professor of Computer Science and Robotics, and Moza Bint Nasser Chair at Carnegie Mellon University. He was an Assistant Professor at Stanford from 1966-69 and Faculty Member at Carnegie Mellon since 1969. He served as the founding Director of the Robotics Institute from 1979 to 1991 and the Dean of School of Computer Science from 1991 to 1999.

He has been active in AI research for over five decades in the areas of AI, Speech Understanding, Image Understanding, Robotics, Multi-sensor Fusion, and Intelligent Agents.

Dr. Reddy's current research interests include: Technology in Service of Society, Voice Computing for the 3B semi-literate populations at the bottom of the pyramid, Digital Democracy, and Learning Science and Technologies.

He is a member of the National Academy of Engineering and the American Academy of Arts and Sciences. He served as co-chair of President Clinton’s Information Technology Advisory Committee (PITAC) from 1999 to 2001. Dr. Reddy is the recipient of the Legion of Honor in 1984, the ACM Turing Award in 1994, the Padma Bhushan in 2001, the Honda Prize in 2005 and Vannevar Bush Award in 2006.

Dr. Rajeev Rastogi

Rajeev Rastogi

Amazon, India

Machine Learning @ Amazon

Wednesday December 12, 09:30 – 10:30  |   Ada Lovelace Auditorium, IST Dept.

In this talk, I will first provide an overview of key problem areas where we are applying Machine Learning (ML) techniques within Amazon such as product demand forecasting, product search, and information extraction from reviews, and associated technical challenges. I will then talk about three specific applications where we use a variety of methods to learn semantically rich representations of data: question answering where we use deep learning techniques, product size recommendations where we use probabilistic models, and fake reviews detection where we use tensor factorization algorithms.

Rajeev Rastogi is a Director of Machine Learning at Amazon where he is developing ML platforms and applications for the e-commerce domain. Previously, he was Vice President of Yahoo! Labs Bangalore and the founding Director of the Bell Labs Research Center in Bangalore, India. Rajeev is an ACM Fellow and a Bell Labs Fellow. He is active in the fields of databases, data mining, and networking, and has served on the program committees of several conferences in these areas. He currently serves on the editorial board of the CACM, and has been an Associate editor for IEEE Transactions on Knowledge and Data Engineering in the past. He has published over 125 papers, and holds over 50 patents. Rajeev received his B.Tech degree from IIT Bombay, and a PhD degree in Computer Science from the University of Texas, Austin.


  • ISRO


  • Flipkart


  • Springer